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The object of this paper is to outline a means of avoiding the preliminary studies of cell size and 
shape, and the accurate orientation of single crystals, prior to the measurement by automatic 
diffractometers of a large number of intensities of reflexion. This is particularly important when 
spherical crystals are used. A tmiversally applicable means of doing this photographically by 
Weissenberg, or rotation retigraph or precession techniques is described. Also the methods of 
using normal-beam and 4-circle diffractometers for this purpose are given. By all of these methods 
the positions in reciprocal space of the reflecting reciprocal points, for a crystal of arbitrary orien- 
tation, are determined. 

The second part of the paper is concerned with the use of digital computers to evaluate the cell 
parameters and the angles defining the orientation of the unit cell. A method is indicated whereby 
the angular settings on the diffractometer for any reflecting plane can be found for the crystal 
of arbitrary orientation. 

1. Introduction 

The application of digital computers to crystallography 
has opened up many new ways of solving crystal 
structures. The first step in the investigation of crystal 
structures is the measurement of the intensity of 
reflex_ion of each lattice plane. Until now this has 
almost always required an accurate orientation of the 
crystallographic axes relative to the measuring instru- 
ment. A zone axis has usually been set parallel to 
the main axis of rotation of a Weissenberg or a 
precession instrument and in diffractometers a zone 
axis has been set parallel to the axis of rotation of 
the goniometer head on which the crystal is mounted. 
In order to avoid uncertain and difficult corrections 
on account of the absorption of X-rays in the specimen 
it is usual to grind the crystal into a spherical shape. 
In doing so all trace of the external faces is lost and 
the crystal must be set up on the goniometer head 
with an arbitrary orientation. Then follows a process 
of orientation which is difficult unless certain striking 
features of the diffraction pattern happen to be 
observed. Except in the simplest cases, it is necessary 
to know the cell dimensions and angles before the 
measurements can be used to orientate the crystal and 
identify the indices of the reflexions. This requires 
considerable knowledge of crystallographic theory and 
practice. 

The present paper is concerned with ways of 
avoiding this prior determination of the cell size 
and shape and the present method makes no demands 
on the crystallographic knowledge of the operator. 
The problem has two aspects, one experimental and 
the other computational. The experimental problem 
is the determination of the directions in which the 
reflexions occur together with the corresponding 
settings of the crystal. This may be solved using either 
photographic goniometers (e.g. Weissenberg, rotation 

retigraph, precession) or diffractometers, either normal 
beam, equi-inclination or 4-circle instrumeri~s. Which- 
ever experimental method is used the computational 
problem is the same. The angular measurements must 
be interpreted to give the cell size and shape and also 
the orientation of the cell edges with respect to the 
principal axes of the instrument used. 

2. Exper imenta l  methods  

2.1. Weissenberg goniometers 
The instrument is used in the equi-inclination 

arrangement and all rays recorded on a given photo- 
graph make the same angle, denoted v, with the axis 
of the goniometer head. The limiting screen is made 
narrow enough to admit rays which differ in their 
inclination to the main axis by a small angle. In 
this paper we shall take the range in v-values passed 
by the screen in its equatorial setting to be 2~.1° 
The crystal sphere is set up on the goniometer head 
with an arbitrary orientation and the photograph is 
taken in the usual way. In general there will be only 
a small number of spots in the photograph. The 
coordinates in reciprocal space of each spot are 
measured on a Weissenberg chart and plotted on a 
diagram. In general this diagram is a section of 
reciprocal space parallel to the equatorial plane 
distant 2 sin v from it. A general definition of the 
orientation of the reflecting plane, applicable to all 
such sections of reciprocal space, may be given as 
follows. Each reciprocal point is joined by a line 
(called the relvector) to the origin and the polar 
coordinates of this line are denoted @ and q~ respec- 
tively. The angle @ is that  between the relvector and 
the axis of rotation. The angle ~ is that  between 
two planes intersecting in the axis of rotation, one 
of which contains the relvector and the other is an 
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arbitrarily chosen reference plane. The length of the 
relvector is denoted d*. On the diagram for the 
equatorial plane the values of d* and ~ may be read 
off directly from the plot of the reflecting points. 
For all points in the equatorial plane @ is equal to 90 °. 

The limiting screen is now moved along the axis of 
rotation so that  the previous range of reflected rays 
is just excluded. In the equatorial photograph the 
v-values at the edges of the screen were 90°_+ 1¼% 
In the second they are 90° -3~  ° and 90 °-1¼% The 
base of the instrument is rotated 2½ ° to correspond 
to the equi-inclination arrangement. The camera is 
also moved relative to its carriage so as to ensure 
that  ~ = 0  ° corresponds to the same position on the 
film as in the previous photographs. The coordinates 
of the spots are read off as before, but to get the true 
values these must be multiplied by cos v to allow for 
the smaller radius of the reflecting circle when the 
equi-inclination angle is v. The distance, f, of a 
reciprocal point from the centre of the plot of reciprocal 
points is (d*2-4sin2v) ½ further, sin@=f/d*. The 
~-value for each reflexion may be read off as for the 
equatorial photograph. Thus for this photograph d*, @, 
and ~-values can be assigned to each spot. 

This process may be repeated as many times as may 
be required. If the cell size is large there will be many 
spots on each photograph and few photographs will 
be necessary. I t  is, of course, not necessary to take all 
the settings contiguous with one another. I t  would 
be advantageous to take at least one with as high an 
inclination angle as possible. 

Other types of photographic goniometer, such as 
the rotation retigraph and the precession instruments, 
could be used to find the same experimental data as 
can be obtained with a Weissenberg goniometer. 

2.2. Diffractometers 
2.2.1. Normal-beam type. ~ In the normal-beam 

type of diffractometer the X-ray beam is perpendicular 
to the axis of rotation of the crystal. This axis, 
denoted ~, also coincides with the axis about which 
the detector arm can rotate. The zero setting of the 
detector is that  in which the direct beam enters it. 
The angle of rotation of the detector arm from this 
position is denoted :V. When the detector lies in the 
equatorial plane Y=20. The detector may be rotated 
about an axis lying in the equatorial plane and the 
angle of tilt relative to this plane is denoted v. 

The survey of all possible reflexions is carried out 
as follows. The detector is set with Y=3 ° and v=0  ° 
and the crystal is rotated from ~ = 0  ° to 180 ° at such 
a speed that  a moderately strong reflexion can produce 
a registration of its effect. Usually the crystal will stop 
when a reflexion is detected, retreat, say, 2 ° and then 
traverse the reflexion slowly so as to obtain an accurate 
measure of its intensity. The finite size of the aperture 
in front of the detector causes the volume of reciprocal 
space surveyed by the rotation of the crystal to be 
half of a tore round the ~ axis of mean radius 2sin3 °. 

If the angular divergence, in the equatorial plane, 
of the rays entering the counter is, say, 2 °, the counter 
is now set to Y=5 °, v=0  ° and the crystal rotated 
through half a turn as before. Again the settings for 
reflexions are registered. This process is repeated 
up to, say, :F=30 °. The detector is now rotated so 
that  it is tilted with respect to the equatorial plane 
by 2 ° , assuming this to be the angular divergence of 
the rays entering the counter in a plane perpendicular 
to the equator. A survey from /r=0-30 ° is made as 
before. Each rotation of the crystal permits the 
examination of the reflexions lying in a tore which 
is parallel to the equatorial plane at a height sin v 
above it. If a reflexion occurs with settings Y, v, 
the coordinates in reciprocal space of the reflecting 
reciprocal point may be obtained as follows. In Fig. 1 
the incident X-rays are represented on the stereogram 
by point I and the reflected rays by R. The normal 
to the reflecting planes is given by dr. From the 
geometry of the figure we have 

cos 20 = cos Ycos v (1) 

d* = 2 sin 0 (2) 

sin y = sin v/(2 sin 0) . (3) 

The three quantities required to define the position 
of the reflecting reciprocal points are d*, @, ~0. We 
obtain d* from equation (2); @ is the angle between 
the normal ~ and the q0 axis, i.e. ½ ~ - y ,  and is given 
by equation (3); ~0 is the angle between the plane 
containing N and the ~ axis and an arbitrarily chosen 
reference plane projecting in Fig. 1 as the line CA. 
Thus by the survey described above all three quantities 
can be obtained for each reflexion. 

A similar analysis may be carried out with the 
equi-inclination type of diffractometer for which the 

A R o 

Fig. 1. Stereogram giving the angles defining the incident 
bean., I, the normal to the reflecting plane, N, and the 
direction of the reflected rays, R. 
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relevant equations corresponding to (1), (2) and (3) 
are a little different. 

2.2.2. 4-circle diffractometer. ~ The 4-circle dif- 
fractometer is derived from the normal-beam dif- 
fractometer by giving the ~ axis a rotation about 
an axis, denoted ~, which is perpendicular to the 
20 axis of the detector (Wooster, 1962). Thus the 

axis is parallel to a radius of the Z circle and the 
9, g and 20 axes all meet at a point where the crystal 
is placed. The Z - 9  assembly is carried on a spindle 
coaxial with the 20 axis, and rotation about this 
spindle is denoted o9. In the present discussion the 
symmetrical setting will be used for which co = 0 and 
the Z axis is the internal bisector of the angle between 
the incident and reflected beams. The detector is 
always in the equatorial plane. 

The starting setting is that  ill which the ~, o9(20) 
axes coincide and for this Z=0. When the crystal 
is rotated about the ~ axis conditions are just the 
same as in the normal-beam diffractometer for the 
equatorial setting. When Z is given any other value, 
the ~-value of the reflecting points is fixed at a value 
½~-~ .  Thus, if a rotation about the 9 axis is made, 
a tore is described in reciprocal space of mean radius 
d*= 2 sin 0 sin ~, and lying in a plane perpendicular 
to ihe ~ axis. Thus the values of d*, ~ and ~ can be 
directly obtained from the 20, g and ~ settings. 
A systematic survey is carried out in a similar manner 
to that  described for the normal-beam diffractometer. 
The crystal is oscillated continuously between 9 = 0 ° 
and 180 ° , the 2;-value is changed by, say, 2½ ° at the 
end of each oscillation, and at the end of a cycle of 
g - ~  changes the value of 20 is changed by, say, 
2½ ° and the cycle repeated. The time required for 
such a survey would depend on the strength of the 
incident beam, the reflecting power of the crystal 
and the number of sections of reciprocal space studied. 
In general a number of sections close to the origin 
would be followed by a few at much greater distances 
from the origin so as to obtain more accurate values 
of the cell dimensions. 

3. Computations 

3.1. The reciprocal vector defining the unit cell 
Any two reflexions hlkll~, h~k21~ are defined by 

ld~*l, ~, 9~ and ]d*[, ~, 9~ respectively. II the sides 
and angles of the reciprocal unit cell are a*, b*, c*, 
c¢*, fl*, ?* then, (Azaroff & Buerger, 1958; Buerger, 
1956; International Tables for X-ray Crystallography, 
1959): 

d* = hla* + k~b* + llc* 
d* = h~a* +/c2b* + 12c* . 

The lengths of the reciprocal vectors are related to 
the unit-cell dimensions by the equations 

d *~' = d*. d* 

= h~a*" + lc~b *~" + 121 c.2 + 2k111 ]b*[[c* I cos ~* 

+ 211h~lc*lla*] cos fl* + 2h~kl [a*llb*l cos ~,* etc. 

(5) 
3"2. Determination of la*[, Ib*] and ]c*[ 

The first part of the computer program involves 
determining I(d2*-dl*)l for every pair of reflexions. 
The value of a is computed by equation (3) from 
0191 and 0 , ~  and then we have 

(do*-d~*)~-d*2+d *~ 2 d'lid2*[ cos a - -  1 2 - -  1 

The values of ]d* t and the lengths of all vectors such 
as ( d ~ - d ~ )  are sorted. The smallest values will 
probably give [a*[, [b*[ and [c*[ but in the case when 
Ic*] is much longer than ]a*] and [b*[ it is possible that  
I(a*+b*)I or some other combination of a* and b* 
may be less than I c*[. To obviate this possibility a 
test must be applied to see if the three shortest 
vectors obtained by sorting are coplanar. The direction 
cosines of d~* with respect to the X, R and ~ axes are 
sin 01 sin ~1, sin ~1 cos ~1 and cos 01, (Fig. 2) so that  
the test for coplanar character of the three vectors 
denoted by subscripts 1, 2, 3 is that  equation (6) shall 
be satisfied 

I s in~ls in91 sin01cos~l  cos~ll 
sin~2sin~2 sin~ecos~2 cosQs = e2 0 .  (6) 
s in~ssin~a sin~acos~3 cos 

X 

N 

Fig. 2. Diagram showing the instrumental xRq~ axial system 
and the angles defining the normal to the reflecting plane, 
ON. 

The angle, o, between the two reciprocal vectors is 
obtained from ~171, ~ by the equation 

cos o=  cos ~1 cos ~2 + sin ~1 sin ~2 cos (~1-  q2). (4) 

In applying this criterion allowance must be made 
for the errors in measuring the angles ~ and ~. These 
errors would make the determinant depart slightly 
from zero even when the vectors are coplanar. The 
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three shortest  non-coplanar  reciprocal vectors are 
taken  to define the uni t  cell. The values of a*, b* 
and  c* m a y  be refined by  a least-squares computer  
program, giving the best f i t  between calculated and 
observed d*-values. 

3"3. Determination of the Q, q~ values for a*, b* and c* 

The components of the vector joining the ends of 
d2* and  d* are 

Id*l sin ~2 sin ~v2-Id*l sin ~1 sin ~vl = p 

Id*] sin ~2 cos ~ve-Id* I sin ~1 cos ~vl = q 

Id*l cos ~2-Id*l  cos e~ = r .  

The direction cosines of the vector ( d * - d l * )  are 
therefore, 

p q r 
[(d2,_dl,) [ = s, i ( d ~ _ d , ) l  - t, i ( d , _ d ~ )  I - u 

which can be computed.  
If by  the sorting for the shortest lat t ice vectors, 

we f ind a* lies along (d* - d*) its ~, ~v values are given 
by 

COS ~) = U 
cos cp = t/sin ~ . 

Thus three vectors have been selected as a*, b*, c* 
and  their  ~, ~v values can be obtained. 

The values of a*, fl*, y* are given by  equat ion (7), 
namely ,  

cos a* = cos ~ cos ~o + sin ~os in  ~o cos (~v~,- ~o) (7) 

and similar  expressions yield cos fl* and cos y*. 
These values are also computed and stored. 

hkl. This cannot be done direct ly bu~ first  we calculate 
the ~ ,  ~%o values relat ive to an orthogonal system 
which is i l lustrated in  Fig. 3. The following relations 
hold (Wooster, 1962): 

1 1 ~ 1  

COS~z ~ ~ C O S 8  

ha* cos 7" + kb* + lc* cos a* 
cos ~vy, = (h2a,~ + k2b, 2 + / 2 c ,  2 sine s + 2klb*c* cosa*" 

+ 21hc*a* cos fl* + 2hka*b* cos ~,*)½ 

I t  is possible to t ransform to the Z, R, ~v axial  sys tem 
since the direction cosines of z and  y* relat ive to 
tha t  sys tem can be found. 

z 

N 

P 

Fig. 3. Diagram showing the  crystal lographic P y * z  axial 
sys tem and the angles defining the  normal  to the  reflecting 
plane, ON. 

4. T h e  c o m p u t a t i o n  of the  s e t t i n g s  for  
all possible reflexions 

At this point  we have avai lable  the informat ion 

]a*], ~a ' ,  ~?a ~, 0¢*, Ua,Va.Wa~ 

and similar  da ta  for b* and c*. The uvw's are direc- 
t ion cosines of the cell edges referred to the 24, R, q~ 
axia l  system. 

From these values we m a y  calculate a, fl, ~ for the 
Bravais  cell by  the formulae 

cos/~* cos y * -  cos ~* 
cos oc = etc. 

sin fl* sin y* 

Also we need the angle s (Wooster, 1962) given by  

cos s = sin a* sin ft .  

Integral values are assigned to hkl and are used to 
calculate dh*c~ from the expression (5). From this 20h~r 
may be obtained since 

dh*~l = 2 sin 0h~l • 

We now require to calculate ~ and ~v for any  given 

The axis z is perpendicular  to a* and  b*. We denote 
the direction cosines of z as Uz, Vz, wz. Then 

U z --~ VboWa, - -  Va.Wb,  

and similar  expressions for vz and  wz. 
The axis y* has direction cosines uu, vuowv°, which 

are a l ready known. Final ly ,  the axis P,  perpendicular  
to z and  y*, has direction cosines given by  

U.p ~ V zWbo - -  Vb°W z e tc .  

The m a t r i x  for conversion from the  Py*z to the 
Z, R, q~ system is 

Z R 
P u p  V p  W p  

y* Ubo %° Who 
Z Uz Vz Wz 

The direction cosines of d* relat ive to the Py*z 
axes are obtained from Qz, 9v* and by  the above ma t r i x  
the corresponding direction cosines relat ive to the  
Z, R, 9 axial  sys tem m a y  be obtained. The ~, ~v values 
are obtained as before from the relat ion 
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C O S  ~) ~--- Wd~ 

cos ~ = Vdo/Sin e • 

Thus the 20, ~ and q~ values for any value of h/el 
can be obtained and used to set the crystal to enable 
any desired reflexion to be studied. 

5. Conclusions 

The procedure described here will lead to an un- 
ambiguous result but the cell determined by this 
procedure need not be the one usually employed. 
For instance a face-centred cubic Bravais lattice has 
a reciprocal counterpart in which the three shortest 
vectors define a rhombohedral cell of side equal to 
V3a* and a * = l l 0  °. A body-centred cubic Bravais 
lattice would likewise be represented in reciprocal 
space by a rhombohedral cell the sides of which are 
V2a* in length and the angle c~*=60 °. There are 
other possible instances where the unit cell chosen 
by this method would have a lower symmetry than 
that  of the usual.ly accepted cell or lack its orthog- 
onality. The indices determined by the present 
procedure could be readily transformed to those 
usually accepted after the measurements of the 
intensity of reflexion had been made. 

Buerger (1942) discusses the relation between the 
reduced reciprocal lattice, derived by the procedure 
described here, and the corresponding Bravais lattice. 
Usually the reduced reciprocal lattice leads to the 

reduced Bravais lattice by the usual transformations. 
In a few cases, however, Buerger points out that  other 
conditions must be applied to determine the true 
reduced Bravais lattice. 

Another feature of this method which should be 
mentioned is the fact that  the low-angle reflexions 
are very convenient for determining the approximate 
size and shape of the reciprocal unit cell while the 
high-angle reflexions are best for finding accurate 
values of these dimensions. I t  would be necessary to 
design the program of computation so that  after 
finding the approximate values of a*, b*, c*, a*, fl*, ~* 
these were automatically refined by taking into 
account the high-angle reflexions. The final values 
of the cell parameters would have to be based on the 
high-angle reflexions so that  the calculated settings 
of the circles were correctly determined for these 
reflexions. 
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The Crystal Structure of Diammonium Dihydrogen Hypophosphate (NHd)2H2P206 
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The crystal structure of diammonium dihydrogen hypophosphate has been solved by trial and 
error and refined in three dimensions. The bond lengths are P-P 2.17, P-O(H) 1.57, and P-O 
1.50 A (twice). The hypophosphate ion has twofold symmetry and adopts a staggered configura- 
tion with symmetry approaching 3m. 

Introduction 

Speculation on the structure of the hypophosphate ion 
[P206] 4- has a long history, chronicled by Van Wazer 
(1958). :No complete structure determination of a 
hypophosphate has been reported, however. 

Crystal  data 

(NHd)2H2P~O6, M.W. 196-1, orthorhombic, a=7.240, 
b=11.465, c=9.350 A (all _+0.005), observed density 
1.679, four molecules per unit cell. Space group 

Pccn (D~hO, No. 56), implied symmetry of the hypo- 
phosphate ion i or 2. 

Crystals of good quality with a typical dimension 
of 0.15 mm were kindly supplied by D. R. Peck of 
this laboratory. 

Structure determinat ion 

The unit cell and space group were reported by 
Raistrick & Hobbs (1949), who from the space group 
and density deduced that  the hypophosphate ions 
existed in the symmetrical form. The resemblance 


